Η ζωή πρέπει να παρθεί ως παιχνίδι...Στην προσπάθειά του ο άνθρωπος,να μπορέσει να ελέγξει καταστάσεις και στην
ακόμη καλύτερη περίπτωση
να τις προβλέψει, εδραιώθηκαν τρόποι και συστήματα, που οδήγησαν στην διαμόρφωση τομέων της επιστήμης,αλληλοεξαρτώμενων συνήθως, όπως φαίνεται και στην περίπτωση των Μαθηματικών, της
Στατιστικής και της Θεωρίας Πιθανοτήτων.
Μέγιστης σημασίας τάση-ανάγκη
στην εποχή μας, αναδείχτηκε, η δυνατότητα πρόβλεψης των αντιδράσεων -ενεργειών εμπλεκόμενων μερών, με ανταγωνιστικά ενδιαφέροντα, σε ένα περιβάλλον που δέχεται μεγαλύτερο αριθμό και ποικιλία επιρροών. Έτσι για άλλη μια φορά,αποδεικνύεται ότι τα Μαθηματικά κάποια στιγμή καταλήγουν να γίνονται εφαρμοσμένα, δηλαδή δίνουν λύσεις στην καθημερινή μας ζωή, και στην προκειμένη περίπτωση θα εξετάσουμε με ποιο τρόπο γίνεται αυτό ,μέσα από τον νέο εξελισσόμενο κλάδο της Θεωρίας παιγνίων, που έδωσε μέχρι στιγμής δύο Βραβεία Νόμπελ,και μια διεθνή βράβευση, στους θεράποντες της. Τι είναι η θεωρία παιγνίωνH θεωρία παιγνίων ξεκίνησε ουσιαστικά το 1928, όταν ο ουγγρικής καταγωγής μεγάλος μαθηματικός John von Neumann δημοσίευσε το θεμελιώδες θεώρημα «μηδενικού αθροίσματος» στο οποίο η απώλεια ενός παίκτη είναι ίση με το κέρδος ενός δεύτερου.
Στη συνέχεια αναπτύχθηκε από τον ίδιο τον von Neumann σε συνεργασία με τον Oskar Morgenstern, όταν το 1944 δημοσίευσαν τη "Θεωρία Παιγνίων και Οικονομική Συμπεριφορά " για να μελετήσουν ανθρώπινες αλληλεπιδράσεις, όπου το καλύτερο που μπορεί να πετύχει κανείς εξαρτάται από το τι θα κάνει ο αντίπαλος.Κατά γενικό κανόνα οι παίκτες εκτελούν τις κινήσεις τους ταυτόχρονα και δεν γνωρίζουν την στρατηγική των αντιπάλων τους.Αυτά τα παιχνίδια που εκτυλίσσονται σαν μαθηματικά μοντέλα χρησιμεύουν αρχικά στην ανάλυση καταστάσεων ανταγωνισμού που σχετίζονται με την οικονομία.,ενώ οι δημιουργοί τους παρουσίασαν μια μέθοδο για τον προσδιορισμό των βέλτιστων στρατηγικών για κάθε παίκτη. Η επιτυχία για τη θεωρία της μεθόδου του, γνωστή και ως "στρατηγική minimax" και η επέκτασή της στις στρατηγικές που περιλαμβάνουν τους τρόπους παιχνιδιού που διέπονται από την τύχη και αποκαλούνται "μεικτές στρατηγικές" ώθησε τους πρώτους μαθηματικούς και οικονομολόγους να μελετήσουν με τη θεωρία παιγνίων πιο περίπλοκες καταστάσεις. Την δεκαετία του
1950 ο John Nash,επέκτεινε τη θεωρία στα παιχνίδια ν παικτών χωρία συνεργασία,όπου απαγορεύονται οι συμμαχίες. Έδειξε ενδιαφέρον, για τα ανταγωνιστικά
παιχνίδια μη μηδενικού αθροίσματος, όπου ο κάθε εμπλεκόμενος,αποκομίζει το μέγιστο δυνατό κέρδος. Με την εμφάνιση των παιχνιδιών,όπου τα κέρδη ενός παίκτη δεν ήταν υποχρεωτικό να αντιστοιχούν στις απώλειες των άλλων,υιοθετήθηκε η ιδέα της συνεργασίας ή μάλλον της έντασης ανάμεσα στη σύγκρουση και τη συνεργασία, δημιουργώντας μοντέλα ακόμη πιο κοντά στην πραγματικότητα.Έκτοτε η θεωρία παιγνίων εφαρμόστηκε σε ένα μεγάλο εύρος πεδίων (ιδιαίτερα όταν υπάρχουν δύο μείζονες «παίκτες»), που εκτείνεται από τις πολεμικές επιχειρήσεις, την πολιτική και την οικονομία ως τη βιολογική εξέλιξη, την κοινωνική ψυχολογία και τη φιλοσοφία, τη μελέτη της ανθρώπινης συμπεριφοράς, χωρίς να παραλείπουμε τα διαδικτυακά παιχνίδια στον κυβερνοχώρο και τις συνέπειές τους. Όλοι αυτοί οι επιστημονικοί τομείς, έχουν ως κοινό τη σημασία που δίνουν στη λήψη αποφάσεων σε καταστάσεις
που η λέξη παιχνίδι χάνει το νόημά της και κατευθύνει περισσότερο στην ιδέα του ρίσκου.Τα "διλήμματα"
Μια από τις πτυχές που κάνει τη θεωρία παιγνίων ιδιαιτέρως ενδιαφέρουσα, είναι η δυνατότητα παρέμβασης σε τομείς των κοινωνικών επιστημών που χαρακτηρίζονται από μια έμφυτη συνιστώσα τύχης και ανθρώπινης συμπεριφοράς, τόσο σε ατομικό όσο και ομαδικό επίπεδο. Έτσι, η ανάπτυξη της θεωρίας παιγνίων οδήγησε στη μελέτη διαφόρων διλημμάτων, με γενικό προσανατολισμό την ένταση ανάμεσα στη σύγκρουση,τον κίνδυνο και την συνεργασία που λόγω της εφαρμογής τους σε πολύ διαφορετικές καταστάσεις,αποτελούν σημαντικό κομμάτι αυτής της θεωρίας και μας δείχνουν αφενός την δυσκολία και
αφετέρου τη δυνατότητα μελέτης, ακόμη και προσδιορισμού των συνθηκών της ανθρώπινης συμπεριφοράς, κυρίως όταν αυτές οι συνθήκες εξαρτώνται από το συνδυασμό των στρατηγικών που χρησιμοποιούν οι διάφοροι εμπλεκόμενοι. Γνωστά τέτοια διλήμματα είναι "το δίλημμα του φυλακισμένου", "το παιχνίδι της κότας", "το δίλημμα των γερακιών και των περιστεριών". Το δίλημμα του φυλακισμένου Η ονομασία "δίλημμα του φυλακισμένου" έχει δοθεί σε ένα τύπο παιχνιδιού, μη μηδενικού αθροίσματος που επινόησαν, το 1950, ο Μ.Flood
και M.Dresdher,εργαζόμενοι στην RAND Cor. και το οποίο ο
A.Tucker απευθυνόμενος σε ψυχολόγους, το παρουσιάζει χρησιμοποιώντας ένα παράδειγμα με φυλακισμένους και ποινές για λόγους κατανόησης. Αυτό είναι ένα από τα πιο διάσημα προβλήματα της θεωρίας παιγνίων.
Πρόκειται για ένα απλό παράδειγμα που εφαρμόζεται σε πολλές καταστάσεις όπου οι δύο δυνάμεις έρχονται σε αντιπαράθεση και μπορούν να επιλέξουν ανάμεσα στη σύγκρουση ή την συνεργασία πχ σ ένα πόλεμο τιμών,μια διαφημιστική εκστρατεία ή ακόμη τον ανταγωνισμό πολεμικών εξοπλισμών.
Το δίλημμα έχει ως εξής:Δύο άνθρωποι (εμείς θα τους αποκαλούμε Α και Β) είναι ύποπτοι για την τέλεση ενός εγκλήματος. Όμως η αστυνομία δεν έχει επαρκή στοιχεία για την ενοχή τους.Ο ανακριτής καλεί τον Α στο γραφείο του και του λέει τα εξής: Αν επιρρίψει την ευθύνη στον Β και ο Β δεν μιλήσει θα αφεθεί ελεύθερος ενώ ο Β θα κάνει 10 χρόνια φυλακή.Αν όμως και
ο Β επιρρίψει την ευθύνη στον Α και οι δύο θα
φυλακιστούν για 4 χρόνια.Αν δεν μιλήσει και τον κατηγορήσει
ο Β,οι όροι αντιστρέφονται.Ο Β θα αφεθεί ελεύθερος και ο Α θα μείνει στη φυλακή για 10 χρόνια.Αν όμως και οι δυο δεν ομολογήσουν θα φυλακιστούν μόνο για ένα χρόνο, λόγω έλλειψης στοιχείων.Την ίδια συζήτηση κάνει και με τον Β. Ο Α και ο Β δεν συναντιούνται και δεν επικοινωνούν μεταξύ τους.Το δίλημμα του φυλακισμένου έχει εφαρμογές στο δίκαιο, την ψυχολογία,ακόμη και την βιολογία.Πηγή
Via
ακόμη καλύτερη περίπτωση
να τις προβλέψει, εδραιώθηκαν τρόποι και συστήματα, που οδήγησαν στην διαμόρφωση τομέων της επιστήμης,αλληλοεξαρτώμενων συνήθως, όπως φαίνεται και στην περίπτωση των Μαθηματικών, της
Στατιστικής και της Θεωρίας Πιθανοτήτων.
Μέγιστης σημασίας τάση-ανάγκη
στην εποχή μας, αναδείχτηκε, η δυνατότητα πρόβλεψης των αντιδράσεων -ενεργειών εμπλεκόμενων μερών, με ανταγωνιστικά ενδιαφέροντα, σε ένα περιβάλλον που δέχεται μεγαλύτερο αριθμό και ποικιλία επιρροών. Έτσι για άλλη μια φορά,αποδεικνύεται ότι τα Μαθηματικά κάποια στιγμή καταλήγουν να γίνονται εφαρμοσμένα, δηλαδή δίνουν λύσεις στην καθημερινή μας ζωή, και στην προκειμένη περίπτωση θα εξετάσουμε με ποιο τρόπο γίνεται αυτό ,μέσα από τον νέο εξελισσόμενο κλάδο της Θεωρίας παιγνίων, που έδωσε μέχρι στιγμής δύο Βραβεία Νόμπελ,και μια διεθνή βράβευση, στους θεράποντες της. Τι είναι η θεωρία παιγνίωνH θεωρία παιγνίων ξεκίνησε ουσιαστικά το 1928, όταν ο ουγγρικής καταγωγής μεγάλος μαθηματικός John von Neumann δημοσίευσε το θεμελιώδες θεώρημα «μηδενικού αθροίσματος» στο οποίο η απώλεια ενός παίκτη είναι ίση με το κέρδος ενός δεύτερου.
Στη συνέχεια αναπτύχθηκε από τον ίδιο τον von Neumann σε συνεργασία με τον Oskar Morgenstern, όταν το 1944 δημοσίευσαν τη "Θεωρία Παιγνίων και Οικονομική Συμπεριφορά " για να μελετήσουν ανθρώπινες αλληλεπιδράσεις, όπου το καλύτερο που μπορεί να πετύχει κανείς εξαρτάται από το τι θα κάνει ο αντίπαλος.Κατά γενικό κανόνα οι παίκτες εκτελούν τις κινήσεις τους ταυτόχρονα και δεν γνωρίζουν την στρατηγική των αντιπάλων τους.Αυτά τα παιχνίδια που εκτυλίσσονται σαν μαθηματικά μοντέλα χρησιμεύουν αρχικά στην ανάλυση καταστάσεων ανταγωνισμού που σχετίζονται με την οικονομία.,ενώ οι δημιουργοί τους παρουσίασαν μια μέθοδο για τον προσδιορισμό των βέλτιστων στρατηγικών για κάθε παίκτη. Η επιτυχία για τη θεωρία της μεθόδου του, γνωστή και ως "στρατηγική minimax" και η επέκτασή της στις στρατηγικές που περιλαμβάνουν τους τρόπους παιχνιδιού που διέπονται από την τύχη και αποκαλούνται "μεικτές στρατηγικές" ώθησε τους πρώτους μαθηματικούς και οικονομολόγους να μελετήσουν με τη θεωρία παιγνίων πιο περίπλοκες καταστάσεις. Την δεκαετία του
1950 ο John Nash,επέκτεινε τη θεωρία στα παιχνίδια ν παικτών χωρία συνεργασία,όπου απαγορεύονται οι συμμαχίες. Έδειξε ενδιαφέρον, για τα ανταγωνιστικά
παιχνίδια μη μηδενικού αθροίσματος, όπου ο κάθε εμπλεκόμενος,αποκομίζει το μέγιστο δυνατό κέρδος. Με την εμφάνιση των παιχνιδιών,όπου τα κέρδη ενός παίκτη δεν ήταν υποχρεωτικό να αντιστοιχούν στις απώλειες των άλλων,υιοθετήθηκε η ιδέα της συνεργασίας ή μάλλον της έντασης ανάμεσα στη σύγκρουση και τη συνεργασία, δημιουργώντας μοντέλα ακόμη πιο κοντά στην πραγματικότητα.Έκτοτε η θεωρία παιγνίων εφαρμόστηκε σε ένα μεγάλο εύρος πεδίων (ιδιαίτερα όταν υπάρχουν δύο μείζονες «παίκτες»), που εκτείνεται από τις πολεμικές επιχειρήσεις, την πολιτική και την οικονομία ως τη βιολογική εξέλιξη, την κοινωνική ψυχολογία και τη φιλοσοφία, τη μελέτη της ανθρώπινης συμπεριφοράς, χωρίς να παραλείπουμε τα διαδικτυακά παιχνίδια στον κυβερνοχώρο και τις συνέπειές τους. Όλοι αυτοί οι επιστημονικοί τομείς, έχουν ως κοινό τη σημασία που δίνουν στη λήψη αποφάσεων σε καταστάσεις
που η λέξη παιχνίδι χάνει το νόημά της και κατευθύνει περισσότερο στην ιδέα του ρίσκου.Τα "διλήμματα"
Μια από τις πτυχές που κάνει τη θεωρία παιγνίων ιδιαιτέρως ενδιαφέρουσα, είναι η δυνατότητα παρέμβασης σε τομείς των κοινωνικών επιστημών που χαρακτηρίζονται από μια έμφυτη συνιστώσα τύχης και ανθρώπινης συμπεριφοράς, τόσο σε ατομικό όσο και ομαδικό επίπεδο. Έτσι, η ανάπτυξη της θεωρίας παιγνίων οδήγησε στη μελέτη διαφόρων διλημμάτων, με γενικό προσανατολισμό την ένταση ανάμεσα στη σύγκρουση,τον κίνδυνο και την συνεργασία που λόγω της εφαρμογής τους σε πολύ διαφορετικές καταστάσεις,αποτελούν σημαντικό κομμάτι αυτής της θεωρίας και μας δείχνουν αφενός την δυσκολία και
αφετέρου τη δυνατότητα μελέτης, ακόμη και προσδιορισμού των συνθηκών της ανθρώπινης συμπεριφοράς, κυρίως όταν αυτές οι συνθήκες εξαρτώνται από το συνδυασμό των στρατηγικών που χρησιμοποιούν οι διάφοροι εμπλεκόμενοι. Γνωστά τέτοια διλήμματα είναι "το δίλημμα του φυλακισμένου", "το παιχνίδι της κότας", "το δίλημμα των γερακιών και των περιστεριών". Το δίλημμα του φυλακισμένου Η ονομασία "δίλημμα του φυλακισμένου" έχει δοθεί σε ένα τύπο παιχνιδιού, μη μηδενικού αθροίσματος που επινόησαν, το 1950, ο Μ.Flood
και M.Dresdher,εργαζόμενοι στην RAND Cor. και το οποίο ο
A.Tucker απευθυνόμενος σε ψυχολόγους, το παρουσιάζει χρησιμοποιώντας ένα παράδειγμα με φυλακισμένους και ποινές για λόγους κατανόησης. Αυτό είναι ένα από τα πιο διάσημα προβλήματα της θεωρίας παιγνίων.
Πρόκειται για ένα απλό παράδειγμα που εφαρμόζεται σε πολλές καταστάσεις όπου οι δύο δυνάμεις έρχονται σε αντιπαράθεση και μπορούν να επιλέξουν ανάμεσα στη σύγκρουση ή την συνεργασία πχ σ ένα πόλεμο τιμών,μια διαφημιστική εκστρατεία ή ακόμη τον ανταγωνισμό πολεμικών εξοπλισμών.
Το δίλημμα έχει ως εξής:Δύο άνθρωποι (εμείς θα τους αποκαλούμε Α και Β) είναι ύποπτοι για την τέλεση ενός εγκλήματος. Όμως η αστυνομία δεν έχει επαρκή στοιχεία για την ενοχή τους.Ο ανακριτής καλεί τον Α στο γραφείο του και του λέει τα εξής: Αν επιρρίψει την ευθύνη στον Β και ο Β δεν μιλήσει θα αφεθεί ελεύθερος ενώ ο Β θα κάνει 10 χρόνια φυλακή.Αν όμως και
ο Β επιρρίψει την ευθύνη στον Α και οι δύο θα
φυλακιστούν για 4 χρόνια.Αν δεν μιλήσει και τον κατηγορήσει
ο Β,οι όροι αντιστρέφονται.Ο Β θα αφεθεί ελεύθερος και ο Α θα μείνει στη φυλακή για 10 χρόνια.Αν όμως και οι δυο δεν ομολογήσουν θα φυλακιστούν μόνο για ένα χρόνο, λόγω έλλειψης στοιχείων.Την ίδια συζήτηση κάνει και με τον Β. Ο Α και ο Β δεν συναντιούνται και δεν επικοινωνούν μεταξύ τους.Το δίλημμα του φυλακισμένου έχει εφαρμογές στο δίκαιο, την ψυχολογία,ακόμη και την βιολογία.Πηγή
Via
www.SPORstories.eu
SPORTS NEWS LIVE BET GAMES SCORES stoixhma olimpiakos- pao nea panathinaikos ΟΛΥΜΠΙΑΚΟΣ ΠΑΟΚ ΑΕΚ ΑΣΤΕΙΑ VIDEO LIVESCORES POKER KAZINO YGEIA ANEKDOTA LIVE STREAM TV
0 σχόλια:
Δημοσίευση σχολίου